Analysis of alternative matrices
In forensic toxicology, analysis of whole blood represents the “gold standard” as concentrations in this medium allows for evaluation of influence and intoxication. In cases where drug use is the issue, e.g. for the prison and probation services, urine is the standard medium. In some cases other matrices can be a better choice. Oral fluid can be sampled under surveillance without the invasion of privacy needed for urine sampling, and hair can uncover long term use of drugs. Dried blood spots is another alternative for less invasive sample collection. In autopsy cases where whole blood is not available due to e.g. severe blood loss or burns, matrices such as pericardial fluid, muscle or vitreous humour could be alternatives. In special cases stomach content or faeces can be other alternative matrices.
Figure 1. Hair sampling (left panel), dried blood samples collected with volumetric absorptive microsampling, VAMS (middle panel), oral fluid sampling (right panel). ©Division of Forensic Sciences, Oslo University Hospital
Ongoing projects
Development of a UHPLC-MS/MS method for determination of endocannabinoids in cerebrospinal fluid
In collaboration with the Department of Psychology at the University of Oslo we take part in a project to decipher endocannabinoid stress buffering in humans. Methods for analysis of endocannabinoids in both plasma and CSF are under development, and the project aims to test the overarching hypothesis that the human endocannabinoid system functions as a ʻstress bufferingʼ system by influencing the stress response and recovery process.
Analysis of dried matrix samples
Dried samples collected on filterpaper, in polymer materials or other devices can provide alternatives in cases where collection of ordinary samples is difficult. We have in later years
- Tested volumetric absorptive micro samplers (VAMS) for drugs of abuse and for samples from research animal
- used filter paper as an inexpensive way of sampling in a proof of principle study together with partners in Cameroon
- analysed oral fluid from used Drugwipe on-site tests to compare with whole blood samples and immune assay results from the on-site tests
Several of the projects are performed together with the group for Substance Use and Health Outcomes or the group for Experimental Drug Abuse Research.
Past projects
Development of a UHPLC-MS/MS method for determination of GHB in oral fluid
A method for analysis of GHB in oral fluid was developed in collaboration with the hospitals Acute Medicines Research. In addition to GHB the method includes the GHB precursors GBL and 1,4 DB as well as the medicinal drug pregabaline.
Analysis of rodenticides in faeces
The project has been a collaboration with the Poison information Centre and the Veterinary Institute, to use faeces as an alternative matrix to evaluate rodenticide exposure.
Oral fluid analysis and comparison to other media
Several methods for analysis of drugs of abuse in oral fluid have been developed, and comparison of detection times found for oral fluid and whole blood or urine has been performed.
Development of methods for hair analysis
Methods for analysis of drugs of abuse and the alcohol metabolite EtG using UHPLC-MS/MS have been developed, as well as a GC-MS/MS method for THC-acid. An ongoing project studies THC-acid use for chronical users.
Collaboration
Marie Eikemo,
Department of Psychology, University of Oslo and Oslo University Hospital
Siri Leknes,
Department of Psychology, University of Oslo and Oslo University Hospital
Yannick Oyono,
(PhD candidate) Faculty of Health Sciences, University of Buea, Buea, Cameroon
Stig Pedersen-Bjerregaard,
Department of Pharmacy, University of Oslo, Oslo, Norway
Marilyn Huestis,
Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, USA
If you have questions about the projects or suggestions for research collaboration, please contact: Elisabeth Leere Øiestad (rmeloi@ous-hf.no).
Publications
Schuller M, Bergh MS, Pedersen-Bjergaard S, Øiestad EL (2024)
Electromembrane extraction of drugs of abuse and prescription drugs from micropulverized hair.
J Anal Toxicol.
DOI 10.1093/jat/bkae051
Bakke E, Terland MN, Strand, DH, Øiestad EL, Hoiseth, G. (2024). Enantiomer specific analysis of amphetamine in urine, oral fluid and blood. J Anal Toxicol. DOI 10.1093/jat/bkae038
Skaalvik, TG, Zhou C, Øiestad EL, Hegstad S, Trones R, Pedersen-Bjergaard S (2023)
Conductive vial electromembrane extraction of opioids from oral fluid.
Analytical and Bioanalytical Chemistry, 415(22), 5323-5335.
DOI 10.1007/s00216-023-04807-3
Gjerde H, Oyono Y, Jamt REG, Tayimetha CY, Asongalem EA, Akum EA, Øiestad EL (2023)
Drug analysis: Comparison between dried plasma spots and liquid plasma samples of trauma patients from Cameroon-A feasibility study
Drug Test Anal
DOI 10.1002/dta.3545, PubMed 37464568
Øiestad EL, Øiestad ÅML, Middelkoop G, Brochmann GW, Thaulow CH, Vindenes V (2023)
Comparative Study of Postmortem Concentrations of Benzodiazepines and Z-Hypnotics in Several Different Matrices
J Anal Toxicol, 47 (3), 287-298
DOI 10.1093/jat/bkac106, PubMed 36542823
Mestad IO, Gjelstad A, Pedersen-Bjergaard S, Oiestad EL (2021)
Green and sustainable drug analysis-Combining microsampling and microextraction of drugs of abuse
Sustain, Chem. Pharm, 24, 100517
DOI 10.1016/j.scp.2021.100517
Pettersen S, Øiestad ÅML, Rogde S, Brochmann GW, Øiestad EL, Vindenes V (2021)
Distribution of tetrahydrocannabinol and cannabidiol in several different postmortem matrices
Forensic Sci Int, 329, 111082
DOI 10.1016/j.forsciint.2021.111082, PubMed 34775328
Bakke E, Høiseth G, Furuhaugen H, Berg T, Arnestad M, Gjerde H (2020)
Oral Fluid to Blood Concentration Ratios of Different Psychoactive Drugs in Samples from Suspected Drugged Drivers
Ther Drug Monit, 42 (5), 795-800
DOI 10.1097/FTD.0000000000000760, PubMed 32251151
Seljetun KO, Sandvik M, Vindenes V, Eliassen E, Øiestad EL, Madslien K, Moe L (2020)
Comparison of anticoagulant rodenticide concentrations in liver and feces from apparently healthy red foxes
J Vet Diagn Invest, 32 (4), 560-564
DOI 10.1177/1040638720927365, PubMed 32476615
Seljetun KO, Vindenes V, Øiestad EL, Brochmann GW, Eliassen E, Moe L (2020)
Determination of anticoagulant rodenticides in faeces of exposed dogs and in a healthy dog population
Acta Vet Scand, 62 (1), 30
DOI 10.1186/s13028-020-00531-5, PubMed 32546243
Bakke E, Høiseth G, Arnestad M, Gjerde H (2019)
Detection of Drugs in Simultaneously Collected Samples of Oral Fluid and Blood
J Anal Toxicol, 43 (3), 228-232
DOI 10.1093/jat/bky079, PubMed 30295809
Øiestad EL, Krabseth HM, Huestis MA, Skulberg A, Vindenes V (2019)
Interpreting oral fluid drug results in prisoners: monitoring current drug intake and detection times for drugs self-administered prior to detention
Forensic Toxicol., 37 (1), 59-74
DOI 10.1007/s11419-018-0434-9
Seljetun KO, Eliassen E, Madslien K, Viljugrein H, Vindenes V, Øiestad EL, Moe L (2019)
Prevalence of Anticoagulant Rodenticides in Feces of Wild Red Foxes (Vulpes Vulpes) in Norway Prevalence of anticoagulant rodenticides in feces of wild red foxes (vulpes vulpes) in Norway.
J Wildl Dis, 55 (4), 834-843
DOI 10.7589/2019-01-027, PubMed 31112468
Bruun LD, Kjeldstadli K, Temte V, Birdal M, Bachs L, Langødegård M, Strand DH, Gaare KI, Øiestad EL, Høiseth G (2019)
Detection Time of Oxazepam and Zopiclone in Urine and Oral Fluid after Experimental Oral Dosing
J Anal Toxicol, 43 (5), 369-377
DOI 10.1093/jat/bky083, PubMed 30615130
Strand MC, Ramaekers JG, Gjerde H, Mørland J, Vindenes V (2019)
Pharmacokinetics of Single Doses of Methadone and Buprenorphine in Blood and Oral Fluid in Healthy Volunteers and Correlation With Effects on Psychomotor and Cognitive Functions
J Clin Psychopharmacol, 39 (5), 489-493
DOI 10.1097/JCP.0000000000001077, PubMed 31305338
Temte V, Kjeldstadli K, Bruun LD, Birdal M, Bachs L, Karinen R, Middelkoop G, Øiestad EL, Høiseth G (2019)
An Experimental Study of Diazepam and Alprazolam Kinetics in Urine and Oral Fluid Following Single Oral Doses
J Anal Toxicol, 43 (2), 104-111
DOI 10.1093/jat/bky062, PubMed 30517712
Høiseth G, Arnestad M, Karinen R, Morini L, Rogde S, Sempio C, Vindenes V, Øiestad ÅML (2018)
Is Hair Analysis Useful in Postmortem Cases?
J Anal Toxicol, 42 (1), 49-54
DOI 10.1093/jat/bkx077, PubMed 28977558
Øiestad ÅML, Karinen R, Rogde S, Nilsen S, Boye Eldor KB, Brochmann GW, Arnestad M, Øiestad EL, Peres MD, Kristoffersen L, Vindenes V (2018)
Comparative Study of Postmortem Concentrations of Antidepressants in Several Different Matrices
J Anal Toxicol, 42 (7), 446-458
DOI 10.1093/jat/bky030, PubMed 29762694
Seljetun KO, Eliassen E, Karinen R, Moe L, Vindenes V (2018)
Quantitative method for analysis of six anticoagulant rodenticides in faeces, applied in a case with repeated samples from a dog
Acta Vet Scand, 60 (1), 3
DOI 10.1186/s13028-018-0357-9, PubMed 29343296
Thaulow CH, Øiestad ÅML, Rogde S, Andersen JM, Høiseth G, Handal M, Mørland J, Vindenes V (2018)
Can measurements of heroin metabolites in post-mortem matrices other than peripheral blood indicate if death was rapid or delayed?
Forensic Sci Int, 290, 121-128
DOI 10.1016/j.forsciint.2018.06.041, PubMed 30015276
Ask KS, Øiestad EL, Pedersen-Bjergaard S, Gjelstad A (2018)
Dried blood spots and parallel artificial liquid membrane extraction-A simple combination of microsampling and microextraction
Anal Chim Acta, 1009, 56-64
DOI 10.1016/j.aca.2018.01.024, PubMed 29422132
Fosen JT, Morini L, Sempio C, Giarratana N, Enger A, Mørland J, Høiseth G (2017)
Ethyl Glucuronide Elimination Kinetics in Fingernails and Comparison to Levels in Hair
Alcohol Alcohol, 52 (5), 580-586
DOI 10.1093/alcalc/agx035, PubMed 28591773