
Christin Lund-Andersen
- Researcher; PhD
- +47 22 78 17 61
Peritoneal metastasis (PM) is characterized by the presence of widespread tumor lesions on the peritoneal surfaces, and is a major cause of cancer death in abdominal malignancies. The peritoneum is the second most common site for metastatic colorectal cancer (CRC) after liver, and is implicated in at least 25-30% of recurrences. Patients with PM-CRC have a poor prognosis (median survival of 30 months), and are more resistant to chemotherapy compared to other metastatic sites such as liver and lung. PM originating from appendiceal tumors (pseudomyxoma peritonei, PMP), on the other hand, has a better prognosis, where current treatment may cure up to 50% of the patients. PMP is a rare disease characterized by abundant mucinous tumor tissue in the peritoneal cavity that eventually, if untreated, will compress and destroy the inner organs. PM is treated with cytoreductive surgery (CRS), followed by hyperthermic intraperitoneal chemotherapy (HIPEC) to kill the remaining tumor cells. The treatment is quite demanding with risk of complications, and the outcome is highly variable. Thus, finding biomarkers and new therapeutic targets is needed to facilitate treatment selection and discover new possible treatment options for these patients.
To approach this aim, we are performing multilevel molecular analysis on PM-CRC and PMP patient samples, harvested during surgery at the Norwegian Radium Hospital. DNA/RNA, extracted from blood and tumor samples, are subjected to next-generation sequencing, and through bioinformatics analysis (which is my main focus) we retrieve knowledge of the mutation profiles, copy number variations, gene expression and fusion genes common for these diseases. Associating these data with clinical characteristics will give us important knowledge for improving patient care (fig1).