Group Publications
S.C.Coelho, M.C.Pereira, A.Juzeniene, P.Juzenas, M.A.N.Coelho (2015) Supramolecular nanoscale assemblies for cancer diagnosis and therapy. J. Control. Rel. 213, 152-167. PubMed ID 26160308 doi:10.1016/j.jconrel.2015.06.034
R.Generalov, W.Boon Kuan, W.Chen, S.Kristensen, P.Juzenas (2015) Radiosensitizing effect of zinc oxide and silica nanocomposites on cancer cells. Colloids Surf. B: Biointerfaces 129, 79-86. PubMed ID 25829130 doi:10.1016/j.colsurfb.2015.03.026
X.Zou, M.Yao, L.Ma, M.Hossu, P.Juzenas, W.Chen (2014) X-ray induced nanoparticles based photodynamic therapy of cancer. Nanomedicine (Lond.) 9(15), 2339-2351. PubMed ID 24471504 doi:10.2217/nnm.13.198
S.C.Coelho, S.Rocha, M.C.Pereira, P.Juzenas, M.A.N.Coelho (2014) Enhancing proteasome-inhibitor effect by functionalized gold nanoparticles. J. Biomed. Nanotech. 10(4), 717-723. PubMed ID 24734524 doi:10.1166/jbn.2014.1743
S.C.Coelho, S.Rocha, P.Juzenas, P.Sampaio, G.M.Almeida, F.S.Silva, M.C.Pereira, M.A.N. Coelho (2013) Gold nanoparticle delivery-enhanced proteasome inhibitor effect in adenocarcinoma cells. Exp. Opin. Drug Deliv. 10(10), 1345-1352. PubMed ID 23937147 doi:10.1517/17425247.2013.827659
P.Juzenas, A.Kleinauskas, P.G.Luo, Y.-P.Sun (2013) Photoactivable carbon nanodots for cancer therapy. Appl. Phys. Lett. 103, ID063701 (4p). doi:10.1063/1.4817787
A.Kleinauskas, S.Rocha, S.Sahu, Y.-P.Sun, P.Juzenas (2013) Carbon-core silver-shell nanodots as sensitizers for phototherapy and radiotherapy. Nanotechnology 24(32), ID325103(10p). PubMed ID 23868054 doi:10.1088/0957-4484/24/32/325103
S.C.Coelho, S.Rocha, M.C.Pereira, M.A.N.Coelho, P.Juzenas (2013) Functionalized gold nanoparticles for drug delivery. Proceedings of the IEEE 3rd Portuguese Meeting in Bioengineering, Braga, Portugal, February 20-23, 2013 (4 p.). doi:10.1109/ENBENG.2013.6518389
A.Kleinauskas, J.-K.Kim, G.-H.Choi, H.T.Kim, K.Røe, P.Juzenas (2012) Superparamagnetic magnetite nanoparticles for cancer theranostics. Rev. Nanosci. Nanotech. 1(4), 271-283. doi:10.1166/rnn.2012.1018
A.Mikulich, S.Kavaliauskiene, P.Juzenas (2012) Blebbistatin, a myosin inhibitor, is phototoxic to human cancer cells under exposure to blue light. Biochim. Biophys. Acta 1820(7), 870877. PubMed ID 22507270 doi:10.1016/j.bbagen.2012.04.003
S.Steponkiene, S.Kavaliauskiene, R.Purviniene, R.Rotomskis, P.Juzenas (2011) Quantum dots affect expression of CD133 surface antigen in melanoma cells. Int. J. Nanomed. 6, 2437-2444. PubMed ID 22072879 doi:10.2147/IJN.S24477
R.Generalov, S.Kavaliauskiene, S.Westrøm, W.Chen, S.Kristensen, P.Juzenas (2011) Entrapment in phospholipid vesicles quenches photoactivity of quantum dots. Int. J. Nanomed. 6, 1875-1888. PubMed ID 21931483 doi:10.2147/IJN.S22953
I.L.Christensen, Y.-P.Sun, P.Juzenas (2011) Carbon dots as antioxidants and prooxidants. J. Biomed. Nanotech. 7(5), 667-676. PubMed ID 22195484 doi:10.1166/jbn.2011.1334
S.Rocha, R.Generalov, M.C.Pereira, P.Juzenas, M.A.N.Coelho (2011) Epigallocatechin gallate-loaded polysaccharide nanoparticles for prostate cancer chemoprevention. Nanomedicine (Lond.) 6(1), 79-87. PubMed ID 21182420 doi:10.2217/nnm.10.101
R.Generalov, S.Lukoseviciute, A.Juzeniene, P.Juzenas (2010) Cytotoxicity and phototoxicity of red fluorescent nontargeted quantum dots. IEEE J. Select. Top. Quantum Electron. 16(4), 997-1003. doi:10.1109/JSTQE.2009.2034387
R.Generalov, I.L.Christensen, W.Chen, Y.-P.Sun, S.Kristensen, P.Juzenas (2009) Generation of singlet oxygen and other radical species by quantum dot and carbon dot nanosensitizers. In Photodynamic Therapy: Back to the Future, June 11-15, 2009, Seattle, WA, Ed. D.H.Kessel. Proc. SPIE 7380, 738072 (9 p.). doi:10.1117/12.830353
P.Juzenas, W.Chen, Y.-P.Sun, M.A.N.Coelho, R.Generalov, N.Generalova, I.L.Christensen (2008) Quantum dots and nanoparticles for photodynamic and radiation therapy of cancer. Adv. Drug Deliv. Rev. 60(15), 1600-1614 (Fig.1 selected as cover image of Dec. 2008 issue). PubMed ID 18840487 doi:10.1016/j.addr.2008.08.004
P.Juzenas, R.Generalov, A.Juzeniene, J.Moan (2008) Generation of nitrogen oxide and oxygen radicals by quantum dots. J. Biomed. Nanotech. 4(4), 450456. doi:10.1166/jbn.2008.008
Publications by Petras Juzenas
86 publications found
Publications 2024
-
Application of Photodynamic Therapy with 5-Aminolevulinic Acid to Extracorporeal Photopheresis in the Treatment of Cutaneous T-Cell Lymphoma: A First-in-Human Phase I/II Study
Pharmaceutics, 16 (6)
DOI 10.3390/pharmaceutics16060815, PubMed 38931936 -
Extracorporeal Photopheresis with 5-Aminolevulinic Acid in Crohn's Disease-A First-in-Human Phase I/II Study
J Clin Med, 13 (20)
DOI 10.3390/jcm13206198, PubMed 39458148
Publications 2023
-
Photodynamic Effects with 5-Aminolevulinic Acid on Cytokines and Exosomes in Human Peripheral Blood Mononuclear Cells from Patients with Crohn's Disease
Int J Mol Sci, 24 (5)
DOI 10.3390/ijms24054554, PubMed 36901982
Publications 2022
-
Amphiphilic Protoporphyrin IX Derivatives as New Photosensitizing Agents for the Improvement of Photodynamic Therapy
Biomedicines, 10 (2)
DOI 10.3390/biomedicines10020423, PubMed 35203632 -
Photodynamic Effects with 5-Aminolevulinic Acid on Cytokines and Exosomes in Human Peripheral Blood Mononuclear Cells
Biomedicines, 10 (2)
DOI 10.3390/biomedicines10020232, PubMed 35203441
Publications 2021
-
Application of Photodynamic Therapy with 5-Aminolevulinic Acid to Extracorporeal Photopheresis in the Treatment of Patients with Chronic Graft-versus-Host Disease: A First-in-Human Study
Pharmaceutics, 13 (10)
DOI 10.3390/pharmaceutics13101558, PubMed 34683851 -
Evaluation of In Vitro Phototoxicity of a Minibody-IR700 Conjugate Using Cell Monolayer and Multicellular Tumor Spheroid Models
Cancers (Basel), 13 (13)
DOI 10.3390/cancers13133356, PubMed 34283089 -
Correction: Sioud et al. Evaluation of In Vitro Phototoxicity of a Minibody-IR700 Conjugate Using Monolayer and Multicellular Tumor Spheroid Models. Cancers 2021, 13, 3356
Cancers (Basel), 13 (21)
DOI 10.3390/cancers13215513, PubMed 34771754 -
Evaluation of the PSMA-Binding Ligand 212Pb-NG001 in Multicellular Tumour Spheroid and Mouse Models of Prostate Cancer
Int J Mol Sci, 22 (9)
DOI 10.3390/ijms22094815, PubMed 34062920
Publications 2020
-
Selective Killing of Activated T Cells by 5-Aminolevulinic Acid Mediated Photodynamic Effect: Potential Improvement of Extracorporeal Photopheresis
Cancers (Basel), 12 (2)
DOI 10.3390/cancers12020377, PubMed 32041351 -
Predictive biomarkers for 5-ALA-PDT can lead to personalized treatments and overcome tumor-specific resistances
Cancer Rep (Hoboken), 5 (12), e1278
DOI 10.1002/cnr2.1278, PubMed 32737955
Publications 2018
-
The Akt pathway in oncology therapy and beyond (Review)
Int J Oncol, 53 (6), 2319-2331
DOI 10.3892/ijo.2018.4597, PubMed 30334567
Publications 2017
-
Combined inhibition of Wee1 and Chk1 gives synergistic DNA damage in S-phase due to distinct regulation of CDK activity and CDC45 loading
Oncotarget, 8 (7), 10966-10979
DOI 10.18632/oncotarget.14089, PubMed 28030798
Publications 2015
-
Supramolecular nanoscale assemblies for cancer diagnosis and therapy
J Control Release, 213, 152-167
DOI 10.1016/j.jconrel.2015.06.034, PubMed 26160308 -
Radiosensitizing effect of zinc oxide and silica nanocomposites on cancer cells
Colloids Surf B Biointerfaces, 129, 79-86
DOI 10.1016/j.colsurfb.2015.03.026, PubMed 25829130 -
Akt inhibitors in cancer treatment: The long journey from drug discovery to clinical use (Review)
Int J Oncol, 48 (3), 869-85
DOI 10.3892/ijo.2015.3306, PubMed 26698230
Publications 2014
-
Enhancing proteasome-lnhibitor effect by functionalized gold nanoparticles
J Biomed Nanotechnol, 10 (4), 717-23
DOI 10.1166/jbn.2014.1743, PubMed 24734524 -
X-ray-induced nanoparticle-based photodynamic therapy of cancer
Nanomedicine (Lond), 9 (15), 2339-51
DOI 10.2217/nnm.13.198, PubMed 24471504
Publications 2013
-
Gold nanoparticle delivery-enhanced proteasome inhibitor effect in adenocarcinoma cells
Expert Opin Drug Deliv, 10 (10), 1345-52
DOI 10.1517/17425247.2013.827659, PubMed 23937147 -
Photoactivatable carbon nanodots for cancer therapy
Appl. Phys. Lett., 103 (6), 063701
DOI 10.1063/1.4817787 -
Carbon-core silver-shell nanodots as sensitizers for phototherapy and radiotherapy
Nanotechnology, 24 (32), 325103
DOI 10.1088/0957-4484/24/32/325103, PubMed 23868054
Publications 2012
-
Blebbistatin, a myosin inhibitor, is phototoxic to human cancer cells under exposure to blue light
Biochim Biophys Acta, 1820 (7), 870-7
DOI 10.1016/j.bbagen.2012.04.003, PubMed 22507270
Publications 2011
-
Carbon dots as antioxidants and prooxidants
J Biomed Nanotechnol, 7 (5), 667-76
DOI 10.1166/jbn.2011.1334, PubMed 22195484 -
Entrapment in phospholipid vesicles quenches photoactivity of quantum dots
Int J Nanomedicine, 6, 1875-88
DOI 10.2147/IJN.S22953, PubMed 21931483 -
Epigallocatechin gallate-loaded polysaccharide nanoparticles for prostate cancer chemoprevention
Nanomedicine (Lond), 6 (1), 79-87
DOI 10.2217/nnm.10.101, PubMed 21182420 -
Quantum dots affect expression of CD133 surface antigen in melanoma cells
Int J Nanomedicine, 6, 2437-44
DOI 10.2147/IJN.S24477, PubMed 22072879
Publications 2010
-
Cytotoxicity and Phototoxicity of Red Fluorescent Nontargeted Quantum Dots
IEEE J. Sel. Top. Quantum Electron., 16 (4), 997-1003
DOI 10.1109/JSTQE.2009.2034387 -
Reduction of cutaneous photosensitivity by application of ointment containing ferrous or cobaltous ions concomitant with the use of topical protoporphyrin IX precursors
Photodiagnosis Photodyn Ther, 7 (3), 152-7
DOI 10.1016/j.pdpdt.2010.06.003, PubMed 20728838 -
Reflectance spectroscopy and fluorescein angiography applied to assess photodynamic response in healthy mouse skin treated with topical hexylaminolevulinate
Photodiagnosis Photodyn Ther, 7 (4), 239-45
DOI 10.1016/j.pdpdt.2010.07.001, PubMed 21112546 -
Application of 5-aminolevulinic acid and its derivatives for photodynamic therapy in vitro and in vivo
Methods Mol Biol, 635, 97-106
DOI 10.1007/978-1-60761-697-9_7, PubMed 20552342 -
Hexyl aminolaevulinate is a more effective topical photosensitiser precursor than methyl aminolaevulinate and 5-aminolaevulinic acids when applied in equimolar doses
J Pharm Sci, 99 (8), 3486-98
DOI 10.1002/jps.22116, PubMed 20222026 -
Novel patch-based systems for the localised delivery of ALA-esters
J Photochem Photobiol B, 101 (1), 59-69
DOI 10.1016/j.jphotobiol.2010.06.012, PubMed 20634088 -
Influence of penetration enhancers on topical delivery of 5-aminolevulinic acid from bioadhesive patches
J Pharm Pharmacol, 62 (6), 685-95
DOI 10.1211/jpp.62.06.0004, PubMed 20636855 -
CHARACTERIZATION OF CANCER STEM CELLS AND THEIR RESPONSE TO CdTe QUANTUM DOTS
MED PHYS BALTIC STAT (2), 71-+ -
Characterization of cancer stem cells and their response to CdTe quantum dots
Med Phys Balt Stat, 8, 71-76
PublikaID 41
Publications 2009
-
Influence of formulation factors on PpIX production and photodynamic action of novel ALA-loaded microparticles
Biopharm Drug Dispos, 30 (2), 55-70
DOI 10.1002/bdd.645, PubMed 19226650 -
Generation of singlet oxygen and other radical species by quantum dot and carbon dot nanosensitizers
PROC SPIE, 7380, 738072
DOI 10.1117/12.830353
Publications 2008
-
Microneedle arrays permit enhanced intradermal delivery of a preformed photosensitizer
Photochem Photobiol, 85 (1), 195-204
DOI 10.1111/j.1751-1097.2008.00417.x, PubMed 18764907 -
Microneedle-mediated intradermal delivery of 5-aminolevulinic acid: potential for enhanced topical photodynamic therapy
J Control Release, 129 (3), 154-62
DOI 10.1016/j.jconrel.2008.05.002, PubMed 18556084 -
Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer
Adv Drug Deliv Rev, 60 (15), 1600-14
DOI 10.1016/j.addr.2008.08.004, PubMed 18840487 -
Generation of Nitrogen Oxide and Oxygen Radicals by Quantum Dots
J. Biomed. Nanotechnol., 4 (4), 450-456
DOI 10.1166/jbn.2008.008 -
Depth profile of protoporphyrin IX fluorescence in an amelanotic mouse melanoma model
Photochem Photobiol, 85 (3), 760-4
DOI 10.1111/j.1751-1097.2008.00496.x, PubMed 19140894
Publications 2007
-
Photodynamic therapy with di-l-arginine protoporphyrinate on WiDr human colon adenocarcinoma xenografts in athymic nude mice
Photodiagnosis Photodyn Ther, 4 (4), 237-41
DOI 10.1016/j.pdpdt.2007.08.001, PubMed 25047558 -
Topical applications of iron chelators in photosensitization
Photochem Photobiol Sci, 6 (12), 1268-74
DOI 10.1039/b703861e, PubMed 18046481 -
Biological activity of 5-aminolevulinic acid and its methyl ester after storage under different conditions
J Photochem Photobiol B, 87 (2), 67-72
DOI 10.1016/j.jphotobiol.2007.01.003, PubMed 17350278
Publications 2006
-
The effect of dimethylsulfoxide, 1-[2-(decylthio)ethyl]azacyclopentan-2-one and Labrafac(®)CC on porphyrin formation in normal mouse skin during topical application of methyl 5-aminolevulinate: A fluorescence and extraction study
Photodiagnosis Photodyn Ther, 3 (1), 27-33
DOI 10.1016/S1572-1000(05)00109-2, PubMed 25049025 -
The effect of skin permeation enhancers on the formation of porphyrins in mouse skin during topical application of the methyl ester of 5-aminolevulinic acid
J Photochem Photobiol B, 83 (2), 94-7
DOI 10.1016/j.jphotobiol.2005.12.003, PubMed 16442808 -
Influence of formulation factors on methyl-ALA-induced protoporphyrin IX accumulation in vivo
Photodiagnosis Photodyn Ther, 3 (3), 190-201
DOI 10.1016/j.pdpdt.2006.03.007, PubMed 25049154 -
Topical bioadhesive patch systems enhance selectivity of protoporphyrin IX accumulation
Photochem Photobiol, 82 (3), 670-5
DOI 10.1562/2005-08-08-RA-641, PubMed 16475870 -
The influence of light and darkness on cutaneous fluorescence in mice
Luminescence, 21 (3), 159-63
DOI 10.1002/bio.900, PubMed 16502394 -
The influence of temperature on photodynamic cell killing in vitro with 5-aminolevulinic acid
J Photochem Photobiol B, 84 (2), 161-6
DOI 10.1016/j.jphotobiol.2006.02.009, PubMed 16624569 -
Topical application of 5-aminolaevulinic acid, methyl 5-aminolaevulinate and hexyl 5-aminolaevulinate on normal human skin
Br J Dermatol, 155 (4), 791-9
DOI 10.1111/j.1365-2133.2006.07484.x, PubMed 16965430 -
Facilitated delivery of ALA to inaccessible regions via bioadhesive patch systems
J Environ Pathol Toxicol Oncol, 25 (1-2), 389-402
DOI 10.1615/jenvironpatholtoxicoloncol.v25.i1-2.240, PubMed 16566730 -
Singlet oxygen in photosensitization
J Environ Pathol Toxicol Oncol, 25 (1-2), 29-50
DOI 10.1615/jenvironpatholtoxicoloncol.v25.i1-2.30, PubMed 16566709 -
Measurement of lipid oxidation and porphyrins in high oxygen modified atmosphere and vacuum-packed minced turkey and pork meat by fluorescence spectra and images
Meat Sci, 73 (3), 511-20
DOI 10.1016/j.meatsci.2006.02.001, PubMed 22062491 -
Spectroscopic measurements of photoinduced processes in human skin after topical application of the hexyl ester of 5-aminolevulinic acid
J Environ Pathol Toxicol Oncol, 25 (1-2), 307-20
DOI 10.1615/jenvironpatholtoxicoloncol.v25.i1-2.200, PubMed 16566726
Publications 2005
-
Pharmaceutical analysis of 5-aminolevulinic acid in solution and in tissues
J Photochem Photobiol B, 82 (1), 59-71
DOI 10.1016/j.jphotobiol.2005.08.007, PubMed 16242952 -
Deferoxamine photosensitizes cancer cells in vitro
Biochem Biophys Res Commun, 332 (2), 388-91
DOI 10.1016/j.bbrc.2005.04.138, PubMed 15910749 -
Formation of protoporphyrin IX from carboxylic- and amino-derivatives of 5-aminolevulinic acid
Photodiagnosis Photodyn Ther, 2 (2), 129-34
DOI 10.1016/S1572-1000(05)00012-8, PubMed 25048672 -
Kinetics of protoporphyrin IX formation in rat oral mucosa and skin after application of 5-aminolevulinic acid and its methylester
Photochem Photobiol, 81 (2), 394-7
DOI 10.1562/2004-04-02-RA-132, PubMed 15535733 -
Radiosensitization of tumours by porphyrins
Cancer Lett, 235 (1), 40-7
DOI 10.1016/j.canlet.2005.03.041, PubMed 15946797 -
Choice of optimal wavelength for PDT: the significance of oxygen depletion
Photochem Photobiol, 81 (5), 1190-4
DOI 10.1562/2005-04-06-RA-478, PubMed 15934793 -
The role of naturally occurring chlorophyll and porphyrins in light-induced oxidation of dairy products. A study based on fluorescence spectroscopy and sensory analysis
Int. Dairy J., 15 (4), 343-353
DOI 10.1016/j.idairyj.2004.08.009
Publications 2004
-
Spectroscopic evidence of monomeric aluminium phthalocyanine tetrasulphonate in aqueous solutions
J Photochem Photobiol B, 75 (1-2), 107-10
DOI 10.1016/j.jphotobiol.2004.05.011, PubMed 15246357 -
Effectiveness of different light sources for 5-aminolevulinic acid photodynamic therapy
Lasers Med Sci, 19 (3), 139-49
DOI 10.1007/s10103-004-0314-x, PubMed 15503248 -
Reflectance spectra of pigmented and nonpigmented skin in the UV spectral region
Photochem Photobiol, 80 (3), 450-5
DOI 10.1562/0031-8655(2004)080<0450:RSOPAN>2.0.CO;2, PubMed 15623329 -
The effect of sub-lethal ALA-PDT on the cytoskeleton and adhesion of cultured human cancer cells
Biochim Biophys Acta, 1722 (1), 43-50
DOI 10.1016/j.bbagen.2004.11.011, PubMed 15716135 -
Photosensitization with protoporphyrin IX inhibits attachment of cancer cells to a substratum
Biochem Biophys Res Commun, 322 (2), 452-7
DOI 10.1016/j.bbrc.2004.07.132, PubMed 15325251
Publications 2003
-
Pharmacology of protoporphyrin IX in nude mice after application of ALA and ALA esters
Int J Cancer, 103 (1), 132-5
DOI 10.1002/ijc.10802, PubMed 12455066
Publications 2002
-
Systemic photodynamic therapy with aminolevulinic acid induces apoptosis in lesional T lymphocytes of psoriatic plaques
J Invest Dermatol, 119 (1), 77-83
DOI 10.1046/j.1523-1747.2002.01827.x, PubMed 12164928 -
Noninvasive fluorescence excitation spectroscopy during application of 5-aminolevulinic acid in vivo
Photochem Photobiol Sci, 1 (10), 745-8
DOI 10.1039/b203459j, PubMed 12656473 -
Photosensitizing effect of protoporphyrin IX in pigmented melanoma of mice
Biochem Biophys Res Commun, 297 (3), 468-72
DOI 10.1016/s0006-291x(02)02238-6, PubMed 12270116 -
Protoporphyrin IX fluorescence kinetics in UV-induced tumours and normal skin of hairless mice after topical application of 5-aminolevulinic acid methyl ester
J Photochem Photobiol B, 67 (1), 11-7
DOI 10.1016/s1011-1344(02)00269-5, PubMed 12007462 -
Topical application of 5-aminolevulinic acid and its methylester, hexylester and octylester derivatives: considerations for dosimetry in mouse skin model
Photochem Photobiol, 76 (3), 329-34
DOI 10.1562/0031-8655(2002)076<0329:taoaaa>2.0.co;2, PubMed 12403455 -
Temperature effect on accumulation of protoporphyrin IX after topical application of 5-aminolevulinic acid and its methylester and hexylester derivatives in normal mouse skin
Photochem Photobiol, 76 (4), 452-6
DOI 10.1562/0031-8655(2002)076<0452:teoaop>2.0.co;2, PubMed 12405155 -
Production of protoporphyrin IX from 5-aminolevulinic acid and two of its esters in cells in vitro and tissues in vivo
Cell Mol Biol (Noisy-le-grand), 48 (8), 911-6
PubMed 12699250 -
Weekly topical application of methyl aminolevulinate followed by light exposure delays the appearance of UV-induced skin tumours in mice
Arch Dermatol Res, 294 (5), 237-42
DOI 10.1007/s00403-002-0320-4, PubMed 12115027
Publications 2001
-
Fluorescence spectroscopy of normal mouse skin exposed to 5-aminolaevulinic acid and red light
J Photochem Photobiol B, 61 (1-2), 78-86
DOI 10.1016/s1011-1344(01)00149-x, PubMed 11485851 -
Mechanisms and procedures in PDT
SKIN AND ENVIRONMENT - PERCEPTION AND PROTECTION, VOLS 1 AND 2, 641-647 -
On the basis for tumor selectivity in the 5-aminolevulinic acid-induced synthesis of protoporphyrin IX
J. Porphyr. Phthalocyanines, 5 (2), 170-176
DOI 10.1002/jpp.329 -
The influence of UV exposure on 5-aminolevulinic acid-induced protoporphyrin IX production in skin
Photochem Photobiol, 74 (6), 825-8
DOI 10.1562/0031-8655(2001)074<0825:tioueo>2.0.co;2, PubMed 11783939
Publications 2000
-
Phototransformations of 5-aminolevulinic acid-induced protoporphyrin IX in vitro: a spectroscopic study
Photochem Photobiol, 72 (2), 186-92
DOI 10.1562/0031-8655(2000)072<0186:poaaip>2.0.co;2, PubMed 10946571
Publications 1999
-
Clearance of protoporphyrin IX from mouse skin after topical application of 5-aminolevulinic acid and its methyl ester
P SOC PHOTO-OPT INS, 3563, 161-166
DOI 10.1117/12.339134 -
Uptake of topically applied 5-aminolevulinic acid and production of protoporphyrin IX in normal mouse skin: dependence on skin temperature
Photochem Photobiol, 69 (4), 478-81
DOI 10.1111/j.1751-1097.1999.tb03315.x, PubMed 10212580 -
The temperature dependence of protoporphyrin IX production in cells and tissues
Photochem Photobiol, 70 (4), 669-73
DOI 10.1111/j.1751-1097.1999.tb08268.x, PubMed 10546563 -
Formation of protoporphyrin IX in mouse skin after topical application of 5-aminolevulinic acid and its methyl ester.
P SOC PHOTO-OPT INS, 3563, 77-81
DOI 10.1117/12.339121