Louise Fremgaard Risnes
- Researcher; PhD
Publications 2024
Generation of circulating autoreactive pre-plasma cells fueled by naive B cells in celiac disease
Cell Rep, 43 (4), 114045
DOI 10.1016/j.celrep.2024.114045, PubMed 38578826
Gluten-Free Diet Induces Rapid Changes in Phenotype and Survival Properties of Gluten-Specific T Cells in Celiac Disease
Gastroenterology, 167 (2), 250-263
DOI 10.1053/j.gastro.2024.03.027, PubMed 38552723
Publications 2022
Pathogenic T Cells in Celiac Disease Change Phenotype on Gluten Challenge: Implications for T-Cell-Directed Therapies
Adv Sci (Weinh), 9 (34), e2205912
DOI 10.1002/advs.202205912, PubMed 36482157
Phenotypic Analysis of Disease-Relevant T Cells in Dermatitis Herpetiformis
J Invest Dermatol, 143 (1), 163-166.e2
DOI 10.1016/j.jid.2022.07.007, PubMed 35961617
Publications 2021
Pathogenic T Cells in Celiac Disease Change Phenotype on Gluten Challenge: Implications for T-Cell-Directed Therapies
Adv Sci (Weinh), 8 (21), e2102778
DOI 10.1002/advs.202102778, PubMed 34495570
Comprehensive Analysis of CDR3 Sequences in Gluten-Specific T-Cell Receptors Reveals a Dominant R-Motif and Several New Minor Motifs
Front Immunol, 12, 639672
DOI 10.3389/fimmu.2021.639672, PubMed 33927715
Single-cell TCR repertoire analysis reveals highly polyclonal composition of human intraepithelial CD8+ αβ T lymphocytes in untreated celiac disease
Eur J Immunol, 51 (6), 1542-1545
DOI 10.1002/eji.202048974, PubMed 33559929
Response to: "Some considerations about γδ and CD8+ T-cell responses in blood after gluten challenge in treated celiac disease"
Mucosal Immunol, 14 (5), 1216-1217
DOI 10.1038/s41385-021-00422-6, PubMed 34108593
Circulating CD103+ γδ and CD8+ T cells are clonally shared with tissue-resident intraepithelial lymphocytes in celiac disease
Mucosal Immunol, 14 (4), 842-851
DOI 10.1038/s41385-021-00385-8, PubMed 33654213
Publications 2019
Resident memory CD8 T cells persist for years in human small intestine
J Exp Med, 216 (10), 2412-2426
DOI 10.1084/jem.20190414, PubMed 31337737
Therapeutic and Diagnostic Implications of T Cell Scarring in Celiac Disease and Beyond
Trends Mol Med, 25 (10), 836-852
DOI 10.1016/j.molmed.2019.05.009, PubMed 31331739
Single-cell TCR sequencing of gut intraepithelial γδ T cells reveals a vast and diverse repertoire in celiac disease
Mucosal Immunol, 13 (2), 313-321
DOI 10.1038/s41385-019-0222-9, PubMed 31728027
A TRAV26-1-encoded recognition motif focuses the biased T cell response in celiac disease
Eur J Immunol, 50 (1), 142-145
DOI 10.1002/eji.201948235, PubMed 31580480
CD38 expression on gluten-specific T cells is a robust marker of gluten re-exposure in coeliac disease
United European Gastroenterol J, 7 (10), 1337-1344
DOI 10.1177/2050640619874183, PubMed 31839959
Publications 2018
Discriminative T-cell receptor recognition of highly homologous HLA-DQ2-bound gluten epitopes
J Biol Chem, 294 (3), 941-952
DOI 10.1074/jbc.RA118.005736, PubMed 30455354
Disease-driving CD4+ T cell clonotypes persist for decades in celiac disease
J Clin Invest, 128 (6), 2642-2650
DOI 10.1172/JCI98819, PubMed 29757191
Publications 2017
A TCRα framework-centered codon shapes a biased T cell repertoire through direct MHC and CDR3β interactions
JCI Insight, 2 (17)
DOI 10.1172/jci.insight.95193, PubMed 28878121
HLA-DQ:gluten tetramer test in blood gives better detection of coeliac patients than biopsy after 14-day gluten challenge
Gut, 67 (9), 1606-1613
DOI 10.1136/gutjnl-2017-314461, PubMed 28779027
Publications 2016
Structures of Preferred Human IgV Genes-Based Protective Antibodies Identify How Conserved Residues Contact Diverse Antigens and Assign Source of Specificity to CDR3 Loop Variation
J Immunol, 196 (11), 4723-30
DOI 10.4049/jimmunol.1402890, PubMed 27183571
Healthy HLA-DQ2.5+ Subjects Lack Regulatory and Memory T Cells Specific for Immunodominant Gluten Epitopes of Celiac Disease
J Immunol, 196 (6), 2819-26
DOI 10.4049/jimmunol.1501152, PubMed 26895834
TCR sequencing of single cells reactive to DQ2.5-glia-α2 and DQ2.5-glia-ω2 reveals clonal expansion and epitope-specific V-gene usage
Mucosal Immunol, 9 (3), 587-96
DOI 10.1038/mi.2015.147, PubMed 26838051